
Barisal University Journal Part 1, 4(2):399-411 (2017) ISSN 2411-247X

399

A FAST ON-LINE HYBRID MATCHING ALGORITHM FOR

EXACT STRING MATCHING

Tania Islam
*
, Kamrul Hasan Talukder and Rahat Hossain Faisal

Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh

Department of Computer Science and Engineering, University of Barisal,

Barisal 8200, Bangladesh

Abstract

String matching technique is the procedure of defining one or more existences of a

pattern string inside a larger string or text. This process is applied in the numerous fields

of computer science for simplifying the pattern searching operations. Several string

searching or string identification algorithms have been identified and continuous studies

are being conducted for further improvement. The aim of our proposed algorithm is to

develop a fast hybrid string matching algorithm which can reduce the amount of

character comparisons than that of ABSBMH algorithm. The combination of some

features of the Quick Search Algorithm, SSABS Algorithm and ABSBMH algorithms

has been used to determine an enriched process of string identification problem, which

will enhance speed and reduce cost. The proposed hybrid algorithm which is called Fast

On-line Hybrid Matching Algorithm (FOHM) algorithm has been tested by using

different types of dataset.

Keywords: On-line string matching, DNA sequence, Protein sequence, Pattern;

ABSBMH algorithm, QS algorithm.

Introduction

In theoretical computer science, one of the most studied research problem is pattern

matching which play an important role in different fields of science and information is

processing. A few of its imperative applications are spell checkers, spam filters, intrusion

detection system, search engines, detecting the copy of text from others, analyzing

biological data and information saving systems, firewall interception and searching

nucleotide or amino acid, identification of pattern in genome, and protein sequence data

(Bhukya and Somayajulu, 2011). Generally pattern matching algorithm mainly depends

on the shifting value of the pattern according to the given text. The greater shift value

*
Corresponding author’s e-mail: tania.bd.09@gmail.com

mailto:tania.bd.09@gmail.com

Barisal University Journal Part 1, 4(2):399-411 (2017) A Fast On-Line Hybrid Matching

400

will make the algorithm more efficient because it can minimize the number of

comparisons (Senapati et al., 2012).

String searching also known as string matching is mainly aimed to find an occurrence of

pattern which length is m, in a given string of length is n, where n≥m (Galil, 1997).

Suppose a text T= {t_1.t_2.t_3……t_n} which contains n number of characters and a

pattern P= {p_1. p_2.p_3…….p_m} of length m. The main target of this algorithm is to

find an integer s, which is referring as valid shift value where 0≤s≤n-m and T

[s+1……….s+m] = P[1…m]. In other word it can describe as to find the pattern P in text

T i.e., where P is consider as the substring of T. The element of T and P are consist of

finite number of alphabet such as {0, 1} or {A, B…..Z, a, b…….z} (Cormen et al.,

1990).

In all pattern matching algorithm a part of given text is selected for matching purpose,

this part is called window which is exact size of the given pattern. This pattern mainly

aligns with window of text from left side to right side and tries to match the text window

character with the pattern character according to any algorithm. This matching process is

differing according to any string searching algorithm. In order to know the existence of

any pattern in a given text an well and strong algorithm is needed (Abdeen, 2011).

A good numbers of algorithms have already been developed for string searching. Each

algorithm uses different technique and strategy for matching. Most of the algorithms use

pre-processing phase. Some algorithms are pre-processed the pattern (Sheik et al., 2004).

The algorithm which pre-processed the pattern is called on-line string matching

algorithm. And whereas some are pre-processed the text (Bhukya and Somayajulu, 2011).

The algorithm which pre-processed the text is called off-line string matching algorithm.

And then it starts searching phase. Also some algorithms pre-processed both pattern and

text before starting searching stage (Bhukya and Somayajulu, 2011). There are some

algorithms which do not require any kind of pre-processing phase (Gonzalo, 2001).

In our proposed algorithm, we pre-processed the given pattern. So our algorithm is called

on-line string matching algorithm. The proposed name of our algorithm is FOHM

algorithm. We pre-process our pattern according to the Quick Search algorithm. In terms

of number character comparison and number of attempt, our algorithm gives better result

than ABSBMH algorithm.

The rest of the paper is prepared as follows. Section 2 which is gives the analysis of

numerous well-organized algorithms in exercise. Section 3 defines the planned algorithm

Barisal University Journal Part 1, 4(2):399-411 (2017) Islam et. al

401

in part. In section 4, the investigational outcomes with judgment between planned

algorithm and other associated algorithm are specified. The section 5 is the description of

conclusion.

Related Work

The basic string matching algorithm which considered as a fundamental algorithm is

Brute-Force algorithm.

Start-to-End Algorithm (Abdeen, 2011) algorithm is the modification of the BF

algorithm. According to this algorithm, here is no need to pre-process the pattern and

text. It starts comparing from the beginning of both text and pattern. It compares the

starting character of text window with the starting character of pattern. In this condition

when they match then it tries to compare the character at the end of the text window and

at end of pattern. Remaining characters are matching from right to left direction basis.

Start-End-Mid Algorithm (Abdeen, 2011) is also the modification of the BF algorithm.

This algorithm also does not require any kind of pre-processing stage. In this algorithm it

is first match with first character of text window with the first character of pattern, then

last character of text with the last character of pattern. At last, finally middle character of

text with the middle character of pattern.

Another basic algorithm is Boyer Moore algorithm (Boyer and Moore, 1977). In this

algorithm the matching is started from the end character of the text window with the end

character of given pattern. This algorithm uses good suffix heuristic and bad character

heuristic to control the shift of the pattern when any mismatch or match occur with the

text and pattern. The Boyer Moore algorithm is considered to be an efficient algorithm

for pattern searching. It has the property that the longer the pattern is; the faster it

performs the comparison. However the algorithm suffers from the phenomenon that it

tends to work incompetently on small alphabets like DNA.

Horspool algorithm (Horspool, 1980) is the simplification of the Boyer-Moore algorithm

(Boyer and Moore, 1977). This algorithm uses the same searching procedure like the BM

algorithm but it only uses the bad character heuristic because good suffix heuristics is

complicated and it is very difficult to implement. Horspool suggested that using only the

bad character heuristic would also give the good result for longer pattern.

Raita algorithm (Raita, 1992) is uses Boyer-Moore bad character table in pre-processing

phase. In its searching phase, this algorithm starts searching from right character in the

text window with the right character of pattern, if it matches then check from left

Barisal University Journal Part 1, 4(2):399-411 (2017) A Fast On-Line Hybrid Matching

402

character in text window with the left character of pattern, if it again matches then starts

matching from the middle of both text and pattern and for the remaining character it starts

matching as right to left order.

Quick search algorithm (Sunday, 1990) is also the simplification of BM algorithm but it

only uses the quick search bad character table (qsBc) for shifting the window of text and

pattern. For calculating the value of qsBc table they use the position of the character from

the right end. If any character does not occur in pattern, then it values calculated as m+1

and in searching phase, matching starts from left to right.

QSS algorithm (Naser et al., 2012) is a hybrid algorithm with the combination of quick

search algorithm and Skip search algorithm. In pre-processing phase it uses quick search

bad character table and skip search skip search bucket. And in searching phase it shifted

the text window according one of these two processes.

The SSABS algorithm (Sheik, 2004) is the mixture of quick search algorithm and Raita

string matching algorithms. The authors use quick search bad character table for shifting

the window. Like Raita algorithm, SSABS algorithm starts comparing from the end

character of the text window with the end character of pattern, if it makes a match then it

compares the starting character of the text window with starting character of pattern.

Remaining characters are matching at right to left order basis.

ABSBMH Algorithm (Mahmood et al., 2017) which is a hybrid algorithm with the

combination of QS algorithm and SSABS algorithm. In this algorithm they use QS bad

character table in pre-processing stage and for shifting the window in searching stage

they use modified horspool algorithm. They compare with end two characters instead of

one that is in SSABS algorithm. Then compare starting character of text window with

starting character of pattern. After that, continue this process from second last to first

character. This algorithm shows worst result for DNA sequence.

Proposed Methodology

After listing most of the well-known string matching algorithms, this section discusses

the proposed hybrid solution that combines the quick Search algorithm, SSABS

algorithm and the ABSBMH algorithms because all of this algorithms are used quick

search bad character table which we used in our proposed algorithm.

Like the others current algorithms, the effectiveness of the planned hybrid algorithm lies

in two segments which are the pre-processing segment and the searching segment. The

Barisal University Journal Part 1, 4(2):399-411 (2017) Islam et. al

403

searching phase is depend on the pre-processing phase of the algorithm which is pre-

processed the pattern in pre-processing phase in order to reduce the number of character

comparisons and number of attempt.

Pre-processing Phase

Pre-processing phase is mainly used to reduce the searching time complexity. Here we

use quick search bad character table to pre-process the pattern. This phase is used to

determine the shift value in case of occurring any kind of mismatch at either the left or

the right side of the text with regard to the pattern. In our proposed hybrid string

matching algorithm, we use quick search bad character table (qsBc) in pre-processing

phase to determine the shifting value of the text window. The QS algorithm bounces the

supreme move value () once the character following to the right most character on

the text window does not seen at the pattern. On the other hand, as soon as the character

next to the rightmost character on the text window matches to the existing character of

the pattern, the quick search algorithm provides the lowest shift value. This work is done

according to the equation 1.

 () {
()

 ()

In quick search algorithm, only one character immediately to the right of the given string

window is considered as the shift value.

Searching Phase

The proposed algorithm is the modification of the searching phase of ABSBMH

algorithm. In our algorithm the searching phase starts from right end of the both text and

pattern window. So that, any mismatch character is occur in end of the both text and

pattern window, both windows will jump to the next shift position according to the

shifting value of quick search bad character table. The main steps of proposed hybrid

algorithm are:

After aligning the window of the text with the pattern, comparisons starts from right side

of the window (Sheik et al., 2004). If any mismatch occurs during the comparison of last

character of the text window with the last character of pattern window, it goes to step 2,

otherwise it again matches with the second last position character of the text with the 2nd

last character of the pattern. If it matches then it compares 3rd on and if it makes a

matching then it matches first character of the text with the first position character of

Barisal University Journal Part 1, 4(2):399-411 (2017) A Fast On-Line Hybrid Matching

404

pattern and continues this process for next two characters, if they all are matched then

start matching from remaining character in the direction of right to left.

In this step when a mismatch occurs in text character with pattern, then the window will

shift to the right side of the text according to the value of bad character table. When a

complete match is found then it is shifted () position.

This procedure is repeated until the window is placed beyond (), that is the

last character of the pattern placed beyond the last character of the text.

When any match found then it repeat the procedure until the end of the text to find the

repetitions of pattern into the given text.

Working Example

In this section we present an example to clarify our proposed FOHSM algorithm.

Given text, Where

Pattern, Where

Pre-processing Phase

The shifting value for window is calculated by using equation 1. Quick search bad

character table value for pattern is given below:

Table 1. Quick search bad character table

 A G C T

qsBc 4 3 5 1

Searching Phase

The searching process of pattern in given text is illustrated through the working

example is given in Fig. 2. In first attempt (Fig. 2a), we align text with pattern in the

left side of the text. A comparison starts from right side of the text () with the right side

of the pattern (). It makes a match, then it compares 2nd last character and it’s a

mismatch, then the window shifts to the right side according to the value of . In 2nd

attempt (Fig. 2b), the last character of text () is making a mismatch with the last

character of pattern (). Then it shifts the window. Again in 3rd attempt (Fig. 2c), 2nd

last character making a mismatch. At last, in 4th (Fig. 2d) attempt, it makes a match in

position of 5 in the text.

Barisal University Journal Part 1, 4(2):399-411 (2017) Islam et. al

405

0 1 2 3 4 5 6 7 8 9 1 0

A T C T G A G T T C T

A G T T

2(a)

0 1 2 3 4 5 6 7 8 9 1 0

A T C T G A G T T C T

 A G T T

2(b)

0 1 2 3 4 5 6 7 8 9 1 0

A T C T G A G T T C T

 A G T T

2(c)

0 1 2 3 4 5 6 7 8 9 1 0

A T C T G A G T T C T

 A G T T

 4 3 2 1

2(d)

Experimental Result

To evaluate the performance of our proposed algorithm, we compare our algorithm with

ABSBMH algorithm that has already been tested with different algorithms.

We use three kinds of data set that is DNA sequence which contains only four characters,

Protein sequence which contains character and English text which contains

characters over small and capital letters with special symbol and numbers.

Barisal University Journal Part 1, 4(2):399-411 (2017) A Fast On-Line Hybrid Matching

406

We tested our algorithm using C# programming language and using laptop computer with

processor Intel (R) core (TM) i5, Operating System name Microsoft Windows 7

professional and RAM 4.00GB.

Our algorithm uses input dataset of 100MB (Mahmood et al., 2017), and different size of

pattern that is and . We randomly choose our pattern from

the data set and tested over 10 times for each pattern size.

The efficiency of any algorithm is depending on the number of character comparisons

and number of attempt. Our algorithm is able to reduce the number of character

comparisons and number of attempt than ABSBMH algorithm.

Table 2 and Table 5 show the number of character comparisons with the proposed

algorithm and ABSBMH algorithm using English type dataset. Our proposed algorithm is

able to minimize the number of comparisons and also number of attempt than that of

ABSBMH algorithm.

By using DNA sequence data types we tested our algorithm and ABSBMH algorithm and

our algorithm gives better output in terms of number of character comparison and number

of attempt which is described in Table 3 & 6.

We are using three types of dataset. Then for another protein sequence our algorithm can

reduce the number of character comparisons and number of attempt than ABSBMH

algorithm that is explain in Table 4 & 7.

It noticed that the number of attempt is almost same or sometimes our algorithm can

work better with the comparison of ABSBMH algorithm. Our algorithm can make better

improvement in terms of number of character comparisons.

Table 2. Number of character comparisons using English type dataset.

Pattern Length ABSBMH FOHM

12 11023806 11023800

24 9046138 9046100

36 6833164 6833100

48 7248270 7246813

60 6467220 6467200

72 5318487 5312962

84 5512485 5505539

96 4984744 4983645

Barisal University Journal Part 1, 4(2):399-411 (2017) Islam et. al

407

Table 3. Number of character comparisons using DNA sequence.

Pattern Length ABSBMH FOHM

12 11023806 11023800

24 9046138 9046100

36 6833164 6833100

48 7248270 7246813

60 6467220 6467200

72 5318487 5312962

84 5512485 5505539

96 4984744 4983645

Table 4. Number of character comparisons using protein sequence.

Pattern Length ABSBMH FOHM

12 13637923 13637119

24 9753190 9750735

36 8160677 8160500

48 7509247 7509200

60 6213911 6213739

72 6166346 6165316

84 4921907 4921807

96 5745196 5745096

Barisal University Journal Part 1, 4(2):399-411 (2017) A Fast On-Line Hybrid Matching

408

Table 5. The Number of attempt using English type dataset.

Pattern Length ABSBMH FOHM

12 10646545 10646543

24 8061707 8061700

36 6833164 6820907

48 6378687 6378680

60 5863962 5863960

72 4853505 4853504

84 4785077 4785076

96 4654523 4654522

Table 6. The Number of attempt using DNA Sequence.

Pattern Length ABSBMH FOHM

12 18757336 18757336

24 42289959 42289958

36 23437604 2343604

48 16739263 16739262

60 38895762 38895760

72 20831745 20831745

84 24919045 24919044

96 26253709 26253709

Barisal University Journal Part 1, 4(2):399-411 (2017) Islam et. al

409

Table 7. The Number of Attempt using Protein Sequence

Pattern Length ABSBMH FOHM

12 11955258 11955257

24 8051802 8051802

36 6741679 6741678

48 6617901 6617900

60 5613590 5613590

72 5686733 5686733

84 4776561 4776560

96 46822223 4682221

Conclusion

In this paper we present an efficient algorithm with the combination of Quick Search

algorithm, SSABS algorithm and ABSBMH algorithm. We are depending only Quick

Search algorithm in the pre-process phase and we modify the search stage of ABSBMH

algorithm. We tested our algorithm using three kinds of data sets that are DNA sequence,

Protein sequence and English alphabet. Experimental result shows that our algorithm

works better than ABSBMH algorithm. In this algorithm we work with only one

sequence or with one long sentence but in future we will try to update our algorithm for

working with multiple sequences and multiple sentences at a time.

Acknowledgement

We would like to acknowledge the ICT Division Ministry of Posts, Telecommunications

and Information Technology, Government of the People’s Republic of Bangladesh and

also Computer Science and Engineering Discipline, Khulna University for supporting this

work.

Barisal University Journal Part 1, 4(2):399-411 (2017) A Fast On-Line Hybrid Matching

410

References

Abdeen R. A, 2011. Start-to-End algorithm for string searching, International Journal of

Computer Science and Network Security. 11:2-12.

Abdeen R. A. 2011. An algorithm for string searching based on brute-force algorithm,

International Journal of Computer Science and Network Security, vol. 11, no.7.

Abdeen R. A. 2011. Start-to-End Algorithm for string searching. International Journal of

Computer Science and Network Security. 11:2-10.

Bhukya R. and Somayajulu. D. 2011. Index based multiple pattern matching algorithm

using DNA sequence and pattern count. International Journal of Information

Technology and Knowledge Management. 4:431-441.

Bhukya R. and Somayajulu. D. 2011. An Index based sequential multiple pattern

matching algorithm using least count. International Conference on Life Science

and Technology, IACSIT Press, Singapore, 3:10-15.

Bhukya R. and D. Somayajulu. 2011. Exact multiple pattern matching algorithm using

DNA sequence and pattern pair. International Journal of Computer Applications,

17:20-25.

Boyer R. S. and J. S. Moore. 1977. A fast string-searching algorithm, Communication of

ACM. 4:762-772

Charras C. and T. Lecroq. 2012. Handbook of Exact String Matching Algorithms, online,

October.

Cormen T. H., C. E. Leiserson and R. L. Rivest. 1990. Introduction to Algorithms, MIT

Press, First Edition, pp. 853-885.

Galil Z. 1997. Pattern Matching Algorithms, Oxford University Press.

Gonzalo N.2001. A guided tour to approximate string matching,” ACM Computing

Surveys. 33:31-88.

Hasan A. A. and N. A. A. Rashid. 2012. Hash - Boyer-Moore - Horspool string matching

algorithm for intrusion detection system. International Conference on Computer

Networks and Communication Systems, IPCSIT. 35:12-16.

Horspool R.1980. Practical fast searching in strings. Software Practice and Experience,

10:501-506.

Mahmood S. S., A. Dabbagh and N. H. Barnouti. 2017. A new efficient hybrid string

matching algorithm to solve the exact string matching problem. British Journal of

Mathematics and Computer Science. 8:1-14.

Michailidis P. D. and K. G. Margaritis. 2007. On-line string matching algorithms:

Survey and experimental results. International Journal of Computer Mathematics.

15:740-741.

Barisal University Journal Part 1, 4(2):399-411 (2017) Islam et. al

411

Naser M. A. S., Rashid N. A., and M. F. Aboalmaaly. 2012. A quick-skip search hybrid

algorithm for the exact string matching problem. International Journal of Computer

Theory and Engineering. 4:2-10.

Raita T. 1992. Tuning the Boyer-Moore-Horspol string matching algorithm. Software-

Practice & Experience. 22:879-884.

Senapati K. K., D. R. D. Adhikary and G. Sahoo. 2012. An application of pattern

matching for motif identification. International Journal of Biometrics and

Bioinformatics (IJBB). 6:111-121.

Sheik S. S., S. K. Aggarwal, A. Poddar, N. Balakrishnan and K. Sekar. 2004. A fast

pattern matching algorithm. Journal of Chemical Information and Computer

Sciences. 44:1251-1256.

Sunday D. M. 1990. A very fast string-searching algorithm. Communication of ACM

33:132-142

